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Abstract

Sandia National Laboratories has tested and evaluated a new infrasound sensor, the MB3a, 
manufactured by Seismo Wave.  These infrasound sensors measure pressure output by a 
methodology developed by researchers at the French Alternative Energies and Atomic Energy 
Commission  (CEA) and the technology was recently licensed to Seismo Wave for production 
and sales. The purpose of the infrasound sensor evaluation was to determine a measured 
sensitivity, transfer function, power, self-noise, dynamic range, seismic sensitivity, and self-
calibration ability.  The MB3a infrasound sensors are being evaluated for potential use in the 
International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty 
Organization (CTBTO).
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1 EXECUTIVE SUMMARY 

Figure 1 MB3a Infrasound Sensors

The evaluation of the two MB3a infrasound sensors, serial numbers 30 and 52, has identified that 
the sensors performance are consistent with their manufacturer’s specifications.

The sensor self-noises are in agreement with the noise models from CEA and were measured to 
be entirely below the Bowman Low Noise Model (LNM).  The MB3a self-noise was evaluated 
as being 36 dB below the noise level of 5 mPa/√Hz at 1 Hz, exceeding the IMS requirement of 
being at least 18 dB below.  In addition, the self-noise of the MB3a appears to be unchanged 
across a wide range of dynamic inputs.  Using the measured self-noise and sensor clip level of 
+/- 24 Volts, the dynamic range was estimated to be more than 115 dB across the 0.02 to 4 Hz 
pass band.

The MB3a SN30 and SN52 have a measured sensitivity at 1 Hz of 21.20 mV/Pa and 20.30 
mV/Pa, respectively.  This represents a difference from the 20 mV/Pa nominal sensitivity of 6% 
(0.51 dB) and 1.5% (0.13 dB).  The responses of both the MB3a sensors are flat to pressure 
across the 0.02 to 4 Hz pass band to within 2.9% (0.25 dB) in magnitude and 0.6 degrees in 
phase.  In addition, the sensor responses appear to be linear to within measurement error across a 
+/- 12 Pa range of amplitudes.

The MB3a calibrator is able to be fed a variety of signals for the purpose of self-calibration.  The 
results of using the calibrator to evaluate sensitivity, response, pass band, and linearity were 
consistent with the results obtained using a piston-phone and separate reference sensor.

The MB3a sensors have an evaluated seismic sensitivity of 0.6 V/m/s2 which is consistent with 
the manufacturer’s specification of 30 Pa/m/s2 for a pressure sensitivity of 20 mV/Pa.
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Table 1 Minimum requirements for station specifications
(from CTBT/PC/II/1/Add.2/Appendix X) 

Characteristics Minimum Requirements MB3a SN 30 MB3a SN 52
Sensor Type Microbarometer Microbarometer Microbarometer
Number of sensors 4-element array1

Geometry Triangle with a component at the 
centre

Spacing Triangle basis:  1 to 3 km2

Station location accuracy ≤100m
Relative sensor location ≤1 m
Measured parameter Absolute3 or differential pressure Absolute and differential, only 

absolute output evaluated
Absolute and differential, only 
absolute output evaluated

Passband 0.02 to 4 Hz 0.01 to 28 Hz 0.01 to 28 Hz
Sensor response Flat to pressure over the passband
Sensor noise ≤ 18 dB below minimum acoustic 

noise4
36 dB below minimum acoustic 
noise

36 dB below minimum acoustic 
noise

Calibration ≤5% in absolute amplitude5

State of health Status data transmitted to the 
International Data Center

Sampling rate ≥ 10 samples per second
Resolution ≥ 1 count per 1 mPa 8.908 counts/mPa  (21.20 mV/Pa 

with a 40 Vpp 24-bit digitizer)
8.529 counts/mPa (20.30 mV/Pa 
with a 40 Vpp 24-bit digitizer)

Dynamic range ≥ 108 dB 115 dB 115 dB
Timing Accuracy ≤1 ms6

Standard temperature range -10°C to +45°C7 Evaluated at approximately 26°C Evaluated at approximately 26°C
Buffer at station or at National 
Data Center

≥7 days

Data format Group of Scientific Expert format
Data frame length ≤30 seconds
Data transmission Continuous
Data availability ≥98 %
Timely data availability ≥97 %
Mission-capable array ≥3 elements operational
Acoustic filtering Noise reduction pipes (site 

dependent)
Auxiliary data Meteorological data8

1 In case of noisy sites or when increased capability is required, number of components could be  
increased.
2 3 km is the recommended spacing.
3 Used for daily state of health.
4 Minimum noise level at 1 Hz : - ~5 mPa.
5 Periodicity : once per year (minimum).
6 Better than or equal to 1 ms.
7 Temperature range to be adapted for some specific sites.
8 Once per minute
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2 TESTING OVERVIEW

2.1 Objectives
The objective of this work was to evaluate the overall technical performance of the MB3a 
infrasound sensor.  The MB3a is a recent infrasound sensor developed by CEA, expanding upon 
the prior MB2000 and MB2005 sensors.  Notable features of the MB3a include a change in the 
transducer from an LVDT to a magnet and coil, the ability to perform calibrations, and a 
significant reduction in the size of the sensor. Basic infrasound sensor characterization includes 
determining sensitivity, linearity to pressure input, power, self-noise, full-scale, dynamic range, 
seismic sensitivity, and nominal transfer function. The results of this evaluation were compared 
to relevant application requirements or specifications of the infrasound sensor provided by the 
manufacturer.

2.2 Test and Evaluation Background
Sandia National Laboratories (SNL), Ground-based Monitoring R&E Department has the long-
standing capability of evaluating the performance of infrasound sensors for geophysical 
applications.

2.3 Standardization and Traceability
Most tests are based on the Institute of Electrical and Electronics Engineers (IEEE) Standard 
1057 [Reference 1] for Digitizing Waveform Recorders and Standard 1241 for Analog to Digital 
Converters [Reference 2].  The analyses based on these standards were performed in the 
frequency domain or time domain as required.  When appropriate, instrumentation calibration 
was traceable to the National Institute for Standards Technology (NIST). 

Prior to testing, the bit weights of the digitizers used in the tests were established by recording a 
known reference signal on each of the digitizer channels.  The reference signal was 
simultaneously recorded on an Agilent 3458A high precision meter with a current calibration 
from Sandia’s Primary Standards Laboratory in order to verify the amplitude of the reference 
signal.  Thus, the digitizer bit weights are traceable to NIST.

The Vaisala PTU300 temperature and pressure sensor has a current calibration from Sandia’s 
Primary Standards Laboratory in order to provide traceability in the measurements of ambient 
temperature and pressure.

The MB2005 infrasound sensor used in this testing has been evaluated using Los Alamos 
National Laboratories calibrated reference chamber to determine its sensitivity.  The MB2000 
used in this testing was subsequently evaluated against the MB2005. In addition, after the testing 
of the MB3a’s was performed, a static pressure calibration of both the MB2000 and MB2005 
was performed at Sandia using a Keller portable calibrator which determined the MB2000 and 
MB2005 sensitivities to be correct to within 1%.
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2.4 Test and Evaluation Process
2.4.1 Infrasound Sensor Testing
Testing of the MB3a sensors was performed on July 21 – 24, 2014, at the Sandia National 
Laboratories Facility for Acceptance, Calibration and Testing (FACT) Site, Albuquerque, NM.

2.4.2  General Infrasound Sensor Performance Tests
The tests that were conducted on the sensors were based on infrasound tests described in the test 
plan: Test Definition and Test Procedures for the Evaluation of Infrasound Sensors. For a 
thorough description of each test performed with details of test configuration layout, analysis 
description and methodology, and result definition, see Merchant 2011.

The tests selected provide a high level of characterization for an infrasound sensor.

Static Performance Tests
Infrasound Power (IS-P)
Infrasound Sensor Isolation Noise (IS-IN)

Tonal Dynamic Performance Tests 
Infrasound Sensor Frequency/Amplitude Response Verification (IS-FAR)
Infrasound Linearity Verification (IS-LV)

Broadband Dynamic Performance Tests
Infrasound Frequency Amplitude Phase Verification (IS-FAPV) 
Infrasound 2 Sensor Noise (IS-2SN) 
Infrasound 3 Sensor Noise (IS-3SN)  
Infrasound Sensor Seismic Sensitivity (IS-SEIS) 

In addition, because the MB3a contains a self-calibration input, many of the above tests were run 
twice:  Once with the piston-phone generating a pressure input and again with the generated 
voltage signal inputted to the calibrator.
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2.5 Test Configuration and System Specifications
The test configuration was setup consistently with the diagram and descriptions below.

Piston 
Phone

Geotech Smart24 
S1036

Geotech Smart24 
S1043

Quanterra 
ULDO

MB2000
SN 1380

MB3a SN 
52

MB2005 
SN 7009

MB3a SN 
30

Isolation Chamber
GS13

SN 882
Vaisala 

PTU 300 
D1050016

Recorded Signals

Generated Signals

Figure 2 Test Configuration Diagram
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Figure 3 Isolation Chamber, MB2000 and MB2005 References, MB3a Sensors

Figure 4 GS13 Seismometer, Vaisala Pressure & Temperature Reference, and  Piston-
Phone
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2.5.1 Power
All of the sensors and digitizers within the testbed were powered off of an isolated 12 Volt 
battery bank that is kept charged with solar panels and a charge controller.

2.5.2 Data Recording
The data from the sensors used in this test were recorded on two Geotech Smart24 digitizers, 
serials numbers S1036 and S1043.  The digitizer channels recording the pressure sensors have a 
nominal bitweight of 3.27 uV/count with a 40 Volt peak-to-peak input range.  The digitizer 
channel recording the output of the GS13 Seismometer has a nominal bitweight of 0.409 
uV/count with a 5 Volt peak-to-peak input range.  The digitizers were configured to record each 
channel of data with a 100 Hz primary channel and a 20 Hz secondary channel.  The 100 Hz rate 
data is used to fully capture the pass band of the MB3a sensor and the 20 Hz rate data is 
representative of the intended IMS use.

The digitizer bitweights were verified prior to testing using a precision DC source that was 
verified against an Agilent 3458A that has been calibrated by the SNL Primary Standards Lab to 
provide traceability.  The measured bitweights, shown in the digitizer configuration tables below, 
were used for all collected sensor data.

Table 2 Geotech Smart24 Digitizer S1036 Configuration
Channel Name Bitweight Description
c1p / c1s 0.40956 uV/count GS13 Vertical Seismometer
c4p / c4s 3.2769 uV/count Vaisala Ambient Pressure
c5p / c5s 3.26912 uV/count Signal Generator Output
c6p / c6s 3.27587 uV/count Vaisala Ambient Temperature

Table 3 Geotech Smart24 Digitizer S1043 Configuration
Channel Name Bitweight Description
c1p / c1s 3.26343 uV/count MB2000 SN1380
c2p / c2s 3.24779 uV/count MB2005 SN7009
c4p / c4s 3.25305 uV/count MB3a SN52
c5p / c5s 3.25293 uV/count MB3a SN30

2.5.3 Signal Generation
The test signals were generated either from the Geotech Smart24 S1043 calibrator output or from 
a Quanterra Ultra Low Distortion Oscillator (ULDO).  Generally, the Smart24 was used to 
generate signals tests involving tones or white noise and the Quanterra ULDO was used to 
generate the high purity tones for the harmonic distortion tests and for the linearity 2-tone 
signals.  The generated signals could then be fed into a piston-phone and converted into a 
varying pressure into the isolation chamber or directly into the MB3a calibration input.  In all 
cases, the generated signals were synchronously recorded on channel 5 of the Geotech Smart24 
S1036 digitizer.
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2.5.4 Reference Sensors
Several references sensors were used throughout the test.

An MB2000 SN 1380 and MB2005 SN 7009 were co-located within the isolation chamber to 
provide a reference measurement for the testing of the MB3a sensors.  The MB2005 has been 
calibrated against the Los Alamos National Laboratory (LANL) calibration chamber and 
determined to have a sensitivity of 97 mV/Pa (Hart, 2012).  A transfer calibration was performed 
at the SNL FACT site to validate that the MB2000 sensitivity of 100 mV/Pa was consistent with 
the MB2005.  In addition, after the testing of the MB3a’s was performed, a static pressure 
calibration of both the MB2000 and MB2005 was performed at Sandia using a Keller portable 
calibrator which determined the MB2000 and MB2005 sensitivities to be correct to within 1%.

A Vaisala PTU300 SN D1050016 temperature and pressure sensor was recorded to provide a 
record of the ambient conditions throughout the testing.  For each test, the ambient conditions 
from the Vaisala were recorded.

A Geotech GS13 SN 882 vertical seismometer was co-located with the sensors just outside of the 
isolation chamber to provide a reference for ground motion.  Coherence between the GS13 
Seismometer and the infrasound sensors was used in determining the seismic sensitivity of the 
infrasound sensors.

2.5.5 Infrasound Sensor Configuration
The infrasound sensors under evaluation were provided by CEA.  The infrasound sensors were 
stated to have an output sensitivity of 20 mV/Pa and were designed for a differential output of 
+/- 24 Volts.  The nominal sensitivity was used in the processing and analysis of all sensor data.  
The sensitivity of the calibrator input was stated to be 6 Pa/V.  The frequency passband is 
specified to be 0.01 to 28 Hz.  The power input voltage range is 7 – 20 Volts DC, with reverse 
polarity protection.

CEA provided the necessary power and signal cables to connect to the MB3a sensor.  SNL added 
connectors as needed to interface the MB3a sensors to the Smart24 testbed digitizer.  SNL 
provided power to the MB3a’s using the separate power connector rather than the signal cable.  
On the signal cable, the absolute pressure output, calibrator input, and calibrator relay were used.  
When performing calibrations of the MB3a with its internal calibrator, the calibration relay was 
connected to the same 12 Volt DC supply as was used to power the sensors.
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2.5.6 Ambient Conditions

Testing of the MB3a was conducted at Sandia National Laboratories Facility for Acceptance, 
Calibration and Testing (FACT) Site in Albuquerque, NM.  The FACT site is at approximately 
1830 meters in elevation.

The ambient pressure and temperature conditions were recorded throughout the test on the 
Vaisala PTU300 reference sensor.  Plots of the recorded pressure and temperature are shown in 
the figure below.  Note that local time in Albuquerque, NM was GMT - 6 during the testing.

Figure 5 Ambient Pressure and Temperature

As may be seen in the plots, the mean atmospheric pressure during the testing was approximately 
82,300 Pa with some variation in ambient pressure between 81,900 and 82,750 Pa during the 
days of testing.  

The ambient temperature in the FACT bunker is very stable during the night with temperatures 
ranging between 26.5 and 27 degrees Celsius.  During the day there were some significant 
variations in temperature due to entering and exiting the underground bunker where the testing 
was being performed.
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3 EVALUATION

3.1 Power
Test description: Measure power consumption of an infrasound sensor under nominal application 
voltage requirements. 

The manufacturer’s specified input voltage range is 7 – 20 V DC.  The evaluation of the MB3a 
sensors was performed at a nominal voltage of 12 V DC powered by a battery.  Measurements of 
voltage and current were made with two hand-held Fluke multi-meters.

Table 4 MB3a Power Consumption
Sensor Power Supply 

Voltage
Current Power Consumption

MB3a SN 30 13.18 V 9.24 mA 121.78 mW
MB3a SN 52 13.19 V 9.26 mA 122.14 mW

The observed power consumption of the MB3a was approximately 122 mW at 13.2 V.
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3.2 Isolation Noise
Test Description: The purpose of the isolation noise test is to provide an environment that is free 
from the influence of atmospheric background, allowing for the evaluation of the sensors’ 
electronics and transducer noise under conditions of minimal excitation. The sensors were 
isolated by placing them inside the 330L chamber with their inlets open. This test was run over 
night, and the data were collected and reviewed prior to processing.

For this test, the digitizer channels recording the MB3a sensors were set to a 16x gain, with a 
bitweight of 0.2033 uV/count, so as to minimize the noise present on the input channel.  A 
common 12 hour time window was used on both of the sensors. The vertical red bars define start 
and end of the time window used in the self-noise analysis.

Figure 6 MB3a Isolation Time Series

Figure 7 MB3a Isolation Power Spectra
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Even with the presence of the isolation chamber to attenuate signals, there remains some 
coherent signal between the two MB3a sensors and the MB2000 reference sensor.  Therefore, the 
2-channel coherence technique was applied to the power spectra of the two MB3a sensors to 
compute their incoherent noise, using a distributed noise model that assumes that the noise is 
evenly distributed between the two sensors.  The MB3a noise, the Bowman Low Noise Model 
(LNM), measured digitizer noise at a gain of 16x, the IMS noise requirement, and an MB3a 
noise model provided by CEA are shown on the plot below.

Figure 8 MB3a Isolation Incoherent Self-Noise

As may be seen, the evaluated MB3a self-noise is consistent with the noise model provided by 
CEA and is more than 36 dB below the noise level of 5 mPa/√Hz at 1 Hz, exceeding the IMS 
requirement of being at least 18 dB below the same noise level.  The observed sensor noise is 
slightly lower than the CEA noise model due to lower digitizer noise and the coherent removal of 
signals common to both sensors.

In addition, the MB3a self-noise is entirely below the Bowman LNM across its defined 
frequency range of 0.03 to 7 Hz.

3.3 Dynamic Range
Test Description:  The purpose of the dynamic range test is to determine the ratio between the 
largest and smallest possible signals that may be observed on the sensor.  We define dynamic 
range as the ratio between the RMS of a full-scale sinusoid at the calibration frequency, typically 
1 Hz, and the RMS noise present in the self-noise of the sensor across an application pass band.

Using the sensor self-noise estimate obtained from 3.2 Isolation Noise, which is believed to be 
the best estimate of self-noise available, the RMS noise and dynamic range using the MB3’s 24 
V clip level at 1 Hz are:

Table 5 MB3a RMS Noise and Dynamic Range
20 mHz - 4 Hz 10 mHz - 28 Hz

MB3a Noise 1.493 mPa rms 2.554 mPa rms
Dynamic Range 115.09 dB 110.43 dB
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The estimated MB3a dynamic range of more than 115 dB exceeds the IMS requirement of 108 
dB across the 0.02 – 4 Hz pass band.  Across the entire pass band of the MB3, 0.01 – 28 Hz, the 
estimated dynamic range still exceeds 110 dB.

Note that for frequencies below 1.6 Hz, CEA specifications state that the MB3a has a dynamic 
range of 117 dB across 0.02 – 4 Hz.  This estimate of dynamic range is computed from the ratio 
of the RMS of a full-scale square wave to the RMS noise present in the sensor self-noise.  The 
difference in SNL’s and CEA’s definitions for dynamic range causes CEA’s dynamic range 
values to be approximately 3 dB higher.  Therefore, SNL’s and CEA’s estimates of dynamic 
range are consistent with SNL’s estimate being approximately 1 dB higher than predicted due to 
the lower estimate of sensor self-noise.

3.4 Frequency Amplitude Response Verification 
Test description: The purpose of the infrasound sensor frequency/amplitude response verification 
test is to determine or verify the infrasound sensor amplitude response at multiple frequencies 
and amplitudes using a variable frequency, variable amplitude piston-phone acoustic signal 
generator.

A sequence of tones covering the combination of frequencies and amplitudes below were 
generated by the calibration output channel of a Smart24 testbed digitizer. The tones were fed 
into a piston-phone infrasound source attached to the 330L test chamber.  Approximately 20 
cycles of each tone were recorded.

Table 6 Piston-phone Tone Amplitudes
Amplitudes 
(Volts) into 
piston-phone

Approximate 
pressure (at 1 Hz) 
within the chamber

0.1 V 0.135 Pa
0.5 V 0.71 Pa
1 V 1.51 Pa
1.5 V 2.37 Pa
2 V 3.23 Pa
2.5 V 3.97 Pa
3 V 4.6 Pa

Table 7 Piston-phone Tone Frequencies
Frequencies
0.01 Hz
0.1 Hz
1 Hz
1.41 Hz
2 Hz
5 Hz
10 Hz

The sequences of tones were run twice:  first during the day to ensure they were correct and a 
second time overnight when temperature variations, wind, and other man-made noise sources 
were minimal.  The results from the two sequences are consistent.  The overnight results are 
shown below. 
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Figure 9 Piston-phone Tone Time Series for 1 Hz

The pressure measurement for each of the tones was observed on the MB2000 reference sensor.  
The reference pressure measurement was then compared to the peak voltages observed on each 
of the sensors under test to compute that sensor’s sensitivity in Volts/Pascal. Where needed, a 
post-processing filter was applied to the waveform data to remove frequency content outside of 
the frequency of the tone so as to improve the performance of the sine fit algorithm.  The time 
windows use to perform the sine fits were set to capture the portion of the tone with the least 
variation in peak amplitude.

Table 8 Piston-phone Sensitivities vs Pressure and Frequency for MB3a SN30
Pressure 
(at 1 Hz)

0.13419 Pa 0.71099 Pa 1.50652 Pa 2.36909 Pa 3.22899 Pa 3.97288 Pa 4.60412 Pa

0.01 Hz 7.8583 mV/Pa* 15.04682 mV/Pa 15.1002 mV/Pa 15.06929 mV/Pa 15.07778 mV/Pa 15.08009 mV/Pa 15.08301 mV/Pa
0.1 Hz 21.23947 mV/Pa 21.23855 mV/Pa 21.22803 mV/Pa 21.23087 mV/Pa 21.22809 mV/Pa 21.2316 mV/Pa 21.23215 mV/Pa
1 Hz 21.24154 mV/Pa 21.19205 mV/Pa 21.20104 mV/Pa 21.19698 mV/Pa 21.18993 mV/Pa 21.19369 mV/Pa 21.19667 mV/Pa
1.41 Hz 21.19045 mV/Pa 21.16637 mV/Pa 21.15832 mV/Pa 21.15065 mV/Pa 21.1548 mV/Pa 21.15208 mV/Pa 21.15436 mV/Pa
2 Hz 21.05205 mV/Pa 21.10102 mV/Pa 21.09361 mV/Pa 21.09228 mV/Pa 21.09075 mV/Pa 21.09253 mV/Pa 21.09242 mV/Pa
5 Hz 20.84193 mV/Pa 20.64477 mV/Pa 20.67116 mV/Pa 20.65139 mV/Pa 20.66099 mV/Pa 20.65065 mV/Pa 20.65769 mV/Pa
10 Hz 19.17531 mV/Pa 19.411 mV/Pa 19.4066 mV/Pa 19.41745 mV/Pa 19.42019 mV/Pa 19.40925 mV/Pa 19.41398 mV/Pa

*The signal to noise ratio was very low on this tone which prevented an adequate sinusoid fit.
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Table 9 Piston-phone Sensitivities vs Pressure and Frequency for MB3a SN52
Pressure 
(at 1 Hz)

0.13419 Pa 0.71099 Pa 1.50652 Pa 2.36909 Pa 3.22899 Pa 3.97288 Pa 4.60412 Pa

0.01 Hz 7.42117 mV/Pa* 14.55745 mV/Pa 14.58072 mV/Pa 14.57365 mV/Pa 14.57251 mV/Pa 14.57372 mV/Pa 14.5768 mV/Pa
0.1 Hz 20.44228 mV/Pa 20.44763 mV/Pa 20.44461 mV/Pa 20.4471 mV/Pa 20.44602 mV/Pa 20.44648 mV/Pa 20.44635 mV/Pa
1 Hz 20.33883 mV/Pa 20.29536 mV/Pa 20.30447 mV/Pa 20.30123 mV/Pa 20.29498 mV/Pa 20.2984 mV/Pa 20.30081 mV/Pa
1.41 Hz 20.27884 mV/Pa 20.24698 mV/Pa 20.24618 mV/Pa 20.23772 mV/Pa 20.24252 mV/Pa 20.23966 mV/Pa 20.24201 mV/Pa
2 Hz 20.12345 mV/Pa 20.17642 mV/Pa 20.16679 mV/Pa 20.16528 mV/Pa 20.16383 mV/Pa 20.16565 mV/Pa 20.16523 mV/Pa
5 Hz 19.91769 mV/Pa 19.71405 mV/Pa 19.73662 mV/Pa 19.71716 mV/Pa 19.72624 mV/Pa 19.71518 mV/Pa 19.72198 mV/Pa
10 Hz 18.37457 mV/Pa 18.58497 mV/Pa 18.57874 mV/Pa 18.5893 mV/Pa 18.59049 mV/Pa 18.57901 mV/Pa 18.58291 mV/Pa

*The signal to noise ratio was very low on this tone which prevented an adequate sinusoid fit.

The average sensitivities across the evaluated pressures at 1 Hz and the differences are shown in 
the table below:

Table 10 Piston-phone Average Sensitivities
Average Sensitivity 
at 1 Hz

Difference from 
20mV/Pa

Maximum difference 
from average at 1 Hz 
across 0.134 – 4.6 Pa 

Maximum difference 
from average across 
0.02 – 4 Hz

MB3a SN30 21.20 mV/Pa 6 % (0.51 dB) 0.19 % (0.016 dB) 0.71 % (0.061 dB)
MB3a SN52 20.30 mV/Pa 1.5 % (0.13 dB) 0.17 % (0.0145 dB) 0.89 % (0.077 dB)

The sensitivities of the MB3a SN30 and SN50 sensors were observed to be 21.20 mV/Pa and 
20.3 mV/Pa at 1 Hz, respectively.  These sensitivity values differed from the nominal sensitivity 
of 20 mV/Pa by 6% (0.51 dB) and 1.5% (0.13 dB), respectively.  Both sensors were flat across 
the 0.134 to 4.6 Pa amplitude range to within +/- 0.198% (0.016 dB) and +/- 0.17% (0.0145 dB) 
respectively.  A slight variation in sensitivity across frequency was observed, however this 
variation is consistent with the roll off present in the response corrections provided by CEA and 
are to be expected.  Across the 0.02 – 4 Hz passband, the observed sensitivities differed from the 
average by +/- 0.71% (0.061 dB) and +/- 0.89% (0.077 dB), respectively.

3.5 Frequency Amplitude Phase Verification
Test description: The purpose of the infrasound sensor frequency/amplitude/phase response 
verification test is to determine or verify the infrasound sensor frequency/amplitude/phase 
response at all frequencies using a variable amplitude, variable frequency piston-phone acoustic 
signal generator and a characterized reference infrasound sensor. 

A sensor with a known instrument response model (MB2000 serial number 1380) was used as a 
reference for this test. A white noise signal was generated by the calibration output channel of a 
Smart24 testbed digitizer with amplitude of 1.0 Volt. This white noise signal was fed into a 
piston-phone infrasound source attached to the 330L infrasound test chamber for two hours. 

The data from the reference sensors and the sensors under test were corrected for their respective 
instrument response models, scaling the records to pressure (Pa) and correcting for amplitude 
and phase.  If all of the instrument response models perfectly represent the reference sensor and 
the sensors under test, then the plots of relative magnitude and phase should be perfectly flat 
lines at 0 dB and 0 degrees, respectively.  The extents to which the relative magnitude and phase 
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are zero represent how consistent the sensors are with their responses and serves to validate the 
pass band of the sensor.

The coherence was computed using the technique described by Holcomb (1989) under the 
distributed noise model assumption. The spectra (power spectral density estimates or PSDs) were 
computed using block-by-block DC removal, Hann windowing, 16K FFT length and 5/8 window 
overlap. With the amount of data processed this provided a 90% confidence interval of 0.66 dB. 

Figure 10 Piston-phone White Noise Power Spectra

The PSDs show good broadband agreement with the MB2000 reference sensor from 0.01 to 40 
Hz. To interpret the test results we need to review the coherence, relative gain, and relative 
phase. The computed mean-squared coherence values, relative gain, and relative phase between 
the reference MB2000 and each of the MB3a sensors under evaluation are plotted below.

Figure 11 Piston-phone White Noise Coherence
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Figure 12 Piston-phone White Noise Relative Magnitude, 0.02 – 4 Hz

Figure 13 Piston-phone White Noise Relative Phase, 0.02 – 4 Hz

Here we can see that the variation in magnitude and phase between the outputs of the MB2000 
reference and each of the MB3a sensors are described in the table below.

Table 11 Piston-phone White Noise Relative Magnitude and Phase, 0.02 – 4 Hz
Magnitude, 0.02 – 4 Hz Phase, 0.02 – 4 Hz

S1043:c4p (MB3a SN 52) +0.25 dB / +0.05 dB +0.1 deg / -0.25 deg
S1043:c5p (MB3a SN 30) +0.7 dB / +0.45 dB +0.3 deg / -0.25 deg

The theoretical response models for both the MB2000 and the MB3a have a 3 dB low frequency 
corner at 0.01 Hz and then flat out beyond 4 Hz.  Given the agreement between the response 
corrected outputs, the evaluated MB3a sensors are consistent with their theoretical response 
model.  Therefore, both the MB3a sensors appear to have a pass band that is flat to within 0.25 
dB and 0.6 degrees over 0.02 to 4 Hz.

There appears to be a fairly consistent 0.4 dB difference in the relative magnitude responses of 
the two MB3a sensors when measuring a coherent white noise signal.

Examining the 100 Hz data to evaluate the full pass band of the MB3a sensors, the magnitude 
and phase response relative to the MB2000 reference are shown in the plots below:
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Figure 14 Piston-phone White Noise Relative Magnitude, 0.01 – 28 Hz

Figure 15 Piston-phone White Noise Relative Phase, 0.01 – 28 Hz

Here we can see that the variation in magnitude and phase between the outputs of the MB2000 
reference and each of the MB3a sensors are described in the table below.

Table 12 Piston-phone White Noise Relative Magnitude and Phase, 0.01 – 28 Hz
Magnitude, 0.01 – 28 Hz Phase, 0.01 – 28 Hz

S1043:c4p (MB3a SN 52) +0.3 dB / -0.5 dB -0.5 deg / +4.5 deg
S1043:c5p (MB3a SN 30) +0.75 dB / -0.5 dB +0 deg / +4.8 deg

The relative magnitude and phase are fairly flat across their 0.01 to 28 Hz pass band to within 0.8 
dB and 5 degrees for SN 52 and 1.25 dB and 4.8 degrees for SN 30.
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3.6 Dynamic Noise
Test Description: The purpose of the dynamic noise test is to evaluate the sensors’ electronics 
and transducer noise under conditions of significant excitation. The sensors were isolated by 
placing them inside the 330L chamber with their inlets open. This test was run over night, and 
the data were collected and reviewed prior to processing.

A band-width limited white noise signal was generated by a Smart24 testbed digitizer with an 
amplitude of 1.0 Volts. This white noise signal was fed into a piston-phone infrasound source 
attached to the 330L infrasound test chamber. 

The data from the reference sensors and the sensors under test were corrected for their respective 
instrument response models, scaling the records to pressure (Pa) and correcting for amplitude 
and phase.

The coherence was computed using the technique described by Holcomb (1989) under the 
distributed noise model assumption. The spectra (power spectral density estimates or PSDs) were 
computed using block-by-block DC removal, Hann windowing, 16K FFT length and 5/8 window 
overlap. With the amount of data processed this provided a 90% confidence interval of 0.66 dB. 

Plots of the time series, power spectral density, and incoherent noise are shown below.

Figure 16 MB3a Dynamic Noise Time Series
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Figure 17 MB3a Dynamic Noise Power Spectra

Figure 18 MB3a Dynamic Noise Incoherent Noise

We observe that the MB3a self-noise, represented by the incoherent noise, is consistent with the 
MB3a noise model from CEA and the isolation self-noise (3.2 Isolation Noise).  This is 
significant as the white noise input signal is as much as 70 dB above the self-noise at frequencies 
above 1 Hz.

Even under dynamic conditions, the MB3a self-noise is more than 35 dB below the minimum 
noise level of 5 mPa/√Hz at 1 Hz, exceeding the IMS requirement of at least 18 dB below. 

3.7 Harmonic Distortion
Test description:  The purpose of the harmonic distortion test is to verify the linearity of the 
sensor.  A Quanterra ultra-low-distortion oscillator is used to generate a very pure sinusoid with 
a frequency of 1.41 Hz and amplitude of 2 V peak for approximately 20 minutes.  The sinusoidal 
signal was fed into a piston-phone infrasound source attached to the 330L infrasound test 
chamber. 
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The data from the reference sensors and the sensors under test were corrected for their respective 
instrument response models, scaling the records to pressure (Pa) and correcting for amplitude 
and phase.

The power spectra of the time series was collected and analyzed to identify the fundamental 
frequency and all harmonics present (Merchant, 2011).

Waveform Peak Count Peak Frequency Peak RMS Secondary RMS THD
S1043:c1p 7 1.41097 Hz 0.86255 Pa rms 3.72135 mPa rms -43.89408 dB
S1043:c4p 9 1.41097 Hz 0.8759 Pa rms 3.75269 mPa rms -44.25617 dB
S1043:c5p 9 1.41097 Hz 0.91477 Pa rms 3.92274 mPa rms -44.21764 dB

The limiting factor in this test is that the piston-phone used in the testbed has a known limitation 
to its linearity of approximately -44 dB.  The result of this test is that all of the sensors (MB2000 
reference and MB3s) perform consistently with their known specifications and that none of them 
have any observed harmonic distortion greater than that of the piston-phone. 

3.8 2-Tone
Test description:  The purpose of the 2-Tone test is to verify the linearity of the sensor.  A 
Quanterra ultra-low-distortion oscillator is used to generate a signal containing two tones.  The 
first tone is a large amplitude (2 Pa), low frequency (0.01 Hz) sinusoid.  The second tone is a 
smaller amplitude (0.5 Pa), higher frequency (1.23 Hz) sinusoid.  The sinusoidal signal was fed 
into a piston-phone infrasound source attached to the 330L infrasound test chamber. 

A sequence of 10 time windows for sine fits, each capturing 5 cycles of the 1.23 Hz tone, were 
then assigned across a half period of the low frequency sinusoid, as shown in the figure below.
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Figure 19 2-Tone Time Series

The time series were then filtered using a highpass butterworth filter with a cutoff frequency of 
50 mHz.  This filter will serve to remove the low frequency signal from the time series.  
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Figure 20 2-Tone Filtered Time Series

The pressure measurement for each of the tones was observed on the MB2000 reference sensor.  
The reference pressure measurement was then compared to the peak voltages observed on each 
of the sensors under test to compute that sensor’s sensitivity in Volts/Pascal.  The observed 
variation in amplitude seen in the signal above is due to effects in the piston-phone source since 
they are observed across all of the sensors.  The analysis of the amplitudes for the sensors under 
test is made relative to what was observed on the reference sensor, therefore any effects of the 
piston-phone should cancel out.

The linearity of the MB3a’s may be determined by examining the estimated sensitivity for 
variations.  If the MB3a is perfectly linear across the amplitude range of the input tone, then 
there should be no variation, to within measurement error, of the sensitivities.

Table 13 2-Tone Sensitivities
1 2 3 4 5 6 7 8 9 10

S1043:c4p
(MB3a SN 52)

20.32852 
mV/Pa

20.34695 
mV/Pa

20.3399 
mV/Pa

20.3398 
mV/Pa

20.35041 
mV/Pa

20.32848 
mV/Pa

20.32724 
mV/Pa

20.32864 
mV/Pa

20.33793 
mV/Pa

20.34684 
mV/Pa

S1043:c5p
(MB3a SN 30)

21.21366 
mV/Pa

21.23632 
mV/Pa

21.23258 
mV/Pa

21.23471 
mV/Pa

21.24393 
mV/Pa

21.21334 
mV/Pa

21.20992 
mV/Pa

21.21609 
mV/Pa

21.22262 
mV/Pa

21.23134 
mV/Pa
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Figure 21 2-Tone Sensitivity MB3a SN52 Figure 22 2-Tone Sensitivity MB3a SN30

MB3a SN52 was observed to have a mean sensitivity across the 2-Tone test of 20.3375 mV/Pa 
with a variation of +/- 0.0129 mV/Pa.

MB3a SN30 was observed to have a mean sensitivity across the 2-Tone test of 21.2255 mV/Pa 
with a variation of +/- 0.0185 mV/Pa.

The observed sensitivity variation in both sensors was less than 0.1%, which is below our 
measurement error. Therefore, using the piston-phone, the two MB3a’s appear to be linear across 
a +/- 3 Pa range of amplitudes.

3.9 Calibrator Frequency Amplitude Response Verification 
Test description: The purpose of the calibrator infrasound sensor frequency/amplitude response 
verification test is to determine or verify the infrasound sensor amplitude response at multiple 
frequencies using the sensors internal calibrator.

A sequence of tones covering the combination of frequencies and amplitudes below were 
generated by a Smart24 testbed digitizer. The tones were fed into both of the MB3’s calibrator 
inputs and simultaneously recorded on a second Smart24 testbed digitizer.  The MB3a sensors 
were enclosed within the 330 L isolation chamber with their inlets open to help isolate them from 
ambient pressure signals.  Approximately 20 cycles of each tone were recorded.

Note that the MB3a calibrator input is expecting a single-sided input signal.  The Smart24 signal 
generator outputs a differential signal.  To compensate, only the positive leg and the ground line 
were connected to the MB3a calibrator input.

The MB3a calibrator enable relay was connected to the 12 V DC power supply to enable the 
calibrator.
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Table 14 Calibrator Tone Amplitudes
Amplitudes 
(Volts) into 
MB3a calibrator

Equivalent Pressure 
(using 6 Pa/V 
calibrator sensitivity)

0.05 V 0.3 Pa
0.25 V 1.5 Pa
0.5 V 3 Pa
0.75 V 4.5 Pa
1 V 6 Pa
1.25 V 7.5 Pa
1.5 V 9 Pa

Table 15 Calibrator Tone Frequencies
Frequencies
0.01 Hz
0.1 Hz
1 Hz
1.41 Hz
2 Hz
5 Hz
10 Hz

The sequences of tones were run twice:  first during the day to ensure they were correct and a 
second time overnight when temperature variations, wind, and other man-made noise sources are 
minimal.  The results from the two sequences are consistent.  The overnight results are shown 
below.

Figure 23 Calibrator Time Series Tones for 1 Hz

The pressure measurement for each of the tones was observed on the recording of the signal 
being inputted into the MB3a calibrator.  The MB3a calibrator sensitivity of 6 Pa/V provided by 
CEA was used to convert the calibrator input voltage into a presumed reference pressure.  The 
reference pressure measurement was then compared to the peak voltages observed on each of the 
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sensors under test to compute that sensor’s sensitivity in Volts/Pascal.  Where appropriate, a 
post-processing filter was applied to the waveform data to remove frequency content outside of 
the frequency of the tone so as to improve the performance of the sine fit algorithm.  The time 
windows use to perform the sine fits were set to capture the portion of the tone with the least 
variation in peak amplitude.

Table 16 Calibrator Sensitivities vs Pressure and Frequency for MB3a SN30
Pressure 
(at 1 Hz)

0.30 Pa 1.50 Pa 3.00 Pa 4.51 Pa 6.02 Pa 7.52 Pa 9.02 Pa

0.01 Hz 15.5862 mV/Pa 15.40524 mV/Pa 15.50763 mV/Pa 15.48722 mV/Pa 15.44926 mV/Pa 15.49004 mV/Pa 15.47189 mV/Pa
0.1 Hz 21.49794 mV/Pa 21.5518 mV/Pa 21.56603 mV/Pa 21.56164 mV/Pa 21.5762 mV/Pa 21.56974 mV/Pa 21.56492 mV/Pa
1 Hz 21.43874 mV/Pa 21.49767 mV/Pa 21.49851 mV/Pa 21.49795 mV/Pa 21.49903 mV/Pa 21.48118 mV/Pa 21.49951 mV/Pa
1.41 Hz 21.36475 mV/Pa 21.45626 mV/Pa 21.45903 mV/Pa 21.46923 mV/Pa 21.45809 mV/Pa 21.45831 mV/Pa 21.45304 mV/Pa
2 Hz 21.37362 mV/Pa 21.38418 mV/Pa 21.38802 mV/Pa 21.39907 mV/Pa 21.40368 mV/Pa 21.40016 mV/Pa 21.40822 mV/Pa
5 Hz 21.02121 mV/Pa 21.02448 mV/Pa 21.02358 mV/Pa 21.02237 mV/Pa 21.02514 mV/Pa 21.02486 mV/Pa 21.02486 mV/Pa
10 Hz 19.97823 mV/Pa 19.97998 mV/Pa 19.9806 mV/Pa 19.98147 mV/Pa 19.98033 mV/Pa 19.98059 mV/Pa 19.98272 mV/Pa

Table 17 Calibrator Sensitivities vs Pressure and Frequency for MB3a SN52
Pressure 
(at 1 Hz)

0.30 Pa 1.50 Pa 3.00 Pa 4.51 Pa 6.02 Pa 7.52 Pa 9.02 Pa

0.01 Hz 15.13938 mV/Pa 15.16425 mV/Pa 15.20549 mV/Pa 15.16323 mV/Pa 15.15731 mV/Pa 15.18525 mV/Pa 15.16079 mV/Pa
0.1 Hz 20.88575 mV/Pa 21.02558 mV/Pa 21.04778 mV/Pa 21.04683 mV/Pa 21.06608 mV/Pa 21.0594 mV/Pa 21.05405 mV/Pa
1 Hz 20.8105 mV/Pa 20.88594 mV/Pa 20.88523 mV/Pa 20.88503 mV/Pa 20.8862 mV/Pa 20.85045 mV/Pa 20.88764 mV/Pa
1.41 Hz 20.61785 mV/Pa 20.82455 mV/Pa 20.82969 mV/Pa 20.85324 mV/Pa 20.8293 mV/Pa 20.83007 mV/Pa 20.82161 mV/Pa
2 Hz 20.74558 mV/Pa 20.71914 mV/Pa 20.7378 mV/Pa 20.75443 mV/Pa 20.75788 mV/Pa 20.75297 mV/Pa 20.76955 mV/Pa
5 Hz 20.34665 mV/Pa 20.34105 mV/Pa 20.3392 mV/Pa 20.34002 mV/Pa 20.34122 mV/Pa 20.34167 mV/Pa 20.34211 mV/Pa
10 Hz 19.27285 mV/Pa 19.28587 mV/Pa 19.28916 mV/Pa 19.29015 mV/Pa 19.2895 mV/Pa 19.29054 mV/Pa 19.29244 mV/Pa

The average sensitivities across the evaluated pressures at 1 Hz and the differences are shown in 
the table below:

Table 18 Calibrator Average Sensitivities
Average Sensitivity 
at 1 Hz

Difference from 
20mV/Pa

Maximum difference 
from average at 1 Hz 
across 0.3 – 9 Pa 

Maximum difference 
from average across 
0.02 – 4 Hz

MB3a SN30 21.49 mV/Pa 7.45 % (0.62 dB) 0.23 % (0.02 dB) 0.57 % (0.049 dB)
MB3a SN52 20.87 mV/Pa 4.35 % (0.37 dB) 0.29 % (0.025 dB) 1.21 % (0.104 dB)

The sensitivities of the MB3a SN30 and SN50 sensors were observed to be 21.49 mV/Pa and 
20.87 mV/Pa at 1 Hz, respectively.  These sensitivity values differed from the nominal 
sensitivity of 20 mV/Pa by 7.45% (0.62 dB) and 4.35% (0.37 dB), respectively.  Both sensors 
were flat across the 0.3 to 9 Pa amplitude range to within +/- 0.23% (0.02 dB) and +/- 0.29% 
(0.025 dB), respectively.  A slight variation in sensitivity across frequency was observed, 
however this variation is consistent with the roll off present in the response corrections provided 
by CEA and are to be expected.  Across the 0.02 – 4 Hz passband, the observed sensitivities 
differed from the average by +/- 0.57% (0.049 dB) and +/- 1.21% (0.104 dB), respectively.
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3.10Calibrator Frequency Amplitude Phase Verification
Test description: The purpose of the infrasound sensor calibrator frequency/amplitude/phase 
response verification test is to determine or verify the infrasound sensor frequency, amplitude, 
phase response at all frequencies using the sensors internal calibrator. 

A band-width limited white noise signal was generated by a Smart24 testbed digitizer with 
amplitude of 1.0 Volts. This white noise signal was fed into both of the MB3a’s calibrator inputs 
and simultaneously recorded on a second Smart24 testbed digitizer.  The MB3a sensors were 
enclosed within the 300 L isolation chamber with their inlets open to help isolate them from 
ambient pressure signals.  This test was run over night, and the data were collected and reviewed 
prior to processing.

The data from the reference sensors and the sensors under test were corrected for their respective 
instrument response models, scaling the records to pressure (Pa) and correcting for amplitude 
and phase.

The coherence was computed using the technique described by Holcomb (1989) under the 
lumped noise model assumption, attributing all incoherent noise to the infrasound sensor. The 
spectra (power spectral density estimates or PSDs) were computed using block-by-block DC 
removal, Hann windowing, 16K FFT length and 5/8 window overlap. With the amount of data 
processed this provided a 90% confidence interval of 0.66 dB. 

Note that the MB3a calibrator input is expecting a single-sided input signal.  The Smart24 signal 
generator outputs a differential signal.  To compensate, only the positive line and the ground line 
were connected to the MB3a calibrator input.

The MB3a calibrator enable relay was connected to the 12 V DC power supply to enable the 
calibrator.
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Figure 24 Calibrator White Noise Time Series

The MB3a does have a resonant mode in its mechanics at a frequency somewhere above its high 
frequency corner of 28 Hz.  If there is significant input energy into the sensor at this frequency, it 
is possible for the mechanics to begin to resonate.  It is believed that this occurred twice in the 
time series above in which there was a significant shift in the DC offset of the signal.  

It should be noted that in case of acoustic or seismic signals with sufficiently high amplitude and 
high frequencies above the sensor pass band, some saturation effects may be observed, as 
described in the clipping level section of the datasheet. Similarly, any input calibration signals 
may have to be controlled to avoid this effect, especially using a broad band signal, such as white 
noise.

The power spectra of the output of the two MB3a sensors and the externally recorded input 
calibration signal (using the 6 Pa/V sensitivity of the calibration coil) are shown below.
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Figure 25 Calibrator White Noise Power Spectra

Figure 26 Calibrator White Noise Coherence

We see in the plot of the coherence between the calibrator input signal and the MB3a sensor 
outputs that the coherence is high at frequencies above 0.04 and 0.1 Hz.  Coherence below 0.04 
and 0.1 Hz, respectively, begins to drop off due to increasing amounts of self-noise present in the 
calibration coil.  We will limit our observations below to the frequencies that have high 
coherence.

Figure 27 Calibrator White Noise Relative Magnitude, 0.02 – 4 Hz
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Figure 28 Calibrator White Noise Relative Phase, 0.02 – 4 Hz

Here we can see that the variation in magnitude and phase between calibrator input signal and 
each of the MB3a sensors are described in the table below.

Table 19 Calibrator White Noise Relative Magnitude and Phase, 0.02 – 4 Hz
Magnitude, 0.02 – 4 Hz Phase, 0.02 – 4 Hz

S1043:c4s (MB3a SN 52) +0.75 dB / +0.3 dB +1 deg / -1 deg
S1043:c5s (MB3a SN 30) +0.75 dB / +0.6 dB +0 deg / -0.5 deg

Note that for MB3a SN52 and SN30, we were unable to comment on the relative magnitude and 
phase response below 0.1 and 0.04 Hz, respectively.

Figure 29 Calibrator Incoherent Noise

The calibration coils were observed to have significantly more noise than the sensing coils, 
shown in the plots of incoherent noise above.  There are no specifications or requirements for 
noise in the calibrator.  However, the observed levels are important to be aware of so that signal 
amplitude levels adequately above the calibrator noise may be selected.

Examining the 100 Hz data to evaluate the full pass band of the MB3a sensors, the magnitude 
and phase responses relative to the calibrator input signal are shown in the plots below:
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Figure 30 Calibrator White Noise Relative Magnitude, 0.01 – 28 Hz

Figure 31 Calibrator White Noise Relative Phase, 0.01 – 28 Hz

Here we can see that the variation in magnitude and phase between calibrator input signal and 
each of the MB3a sensors are described in the table below.

Table 20 Calibrator White Noise Relative Magnitude and Phase, 0.01 – 28 Hz
Magnitude, 0.01 – 28 Hz Phase, 0.01 – 28 Hz

S1043:c4p (MB3a SN 52) -0.75 dB / +0.75 dB -2 deg / +5 deg
S1043:c5p (MB3a SN 30) +0.75 dB / +0.3 dB -3 deg / +2 deg

Examining the coherence, relative magnitude, and relative phase between the outputs of the two 
MB3a’s results in the plots below.
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Figure 32 Calibrator White Noise MB3a vs MB3a Coherence

Figure 33 Calibrator White Noise MB3a vs MB3a Relative Magnitude, 0.1 – 28 Hz

Figure 34 Calibrator White Noise MB3a vs MB3a Relative Phase, 0.1 – 28 Hz

We see that the outputs are highly coherent from 0.1 to above 40 Hz, for the white noise input 
signal we have provided to the calibrator.  The relative magnitude ranges from +0.1 to +0.35 dB 
from 0.1 to 28 Hz, with a value of 0.24 dB at 1 Hz.  The relative phase ranges from -0.25 to 0.9 
degrees from 0.1 to 28 Hz, with a value of 0.25 degrees at 1 Hz.
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3.11Calibrator Harmonic Distortion
Test description:  The purpose of the harmonic distortion test is to verify the linearity of the 
sensor using the sensor’s calibrator.  A Quanterra ultra-low-distortion oscillator was used to 
generate a very pure sinusoid with a frequency of 1.41 Hz and amplitude of 0.5 V (3 Pa) for 
approximately 1 hour.  This white noise signal was fed into both of the MB3’s calibrator inputs 
and simultaneously recorded on a second Smart24 testbed digitizer as a reference.  The MB3a 
sensors were enclosed within the 330 L isolation chamber with their inlets open to help isolate 
them from ambient pressure signals.  

The data from the reference sensors and the sensors under test were corrected for their respective 
instrument response models, scaling the records to pressure (Pa) and correcting for amplitude 
and phase.

The spectra (power spectral density estimates or PSDs) were computed using block-by-block DC 
removal, Hann windowing, 16K FFT length and 5/8 window overlap. With the amount of data 
processed this provided a 90% confidence interval of 0.80 dB.   The power spectra of the time 
series was collected and analyzed to identify the fundamental frequency and all harmonics 
present (Merchant, 2011).

Note that the MB3a calibrator input is expecting a single-sided input signal.  The Smart24 signal 
generator outputs a differential signal.  To compensate, only the positive line and the ground line 
were connected to the MB3a calibrator input.

Figure 35 Calibrator Harmonic Distortion, 3 Pa

The reference signal appears as a very pure tone with a very slight integer hertz noise at 1 Hz and 
a single harmonic visible at 2.42 Hz.  The output of the MB3a sensors has a tone with matching 
signal amplitudes but with somewhat more distortion both at integer hertz and at harmonics of 
1.41 Hz.  The amount of Total Harmonic Distortion (THD) present in each of the recorded 
signals is shown in the table below.

Table 21 Calibrator Harmonic Distortion, 3 Pa
Waveform Peak RMS Secondary RMS THD
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S1036:c5p 
(reference)

2.02853 Pa rms 1.68253 uPa rms -119.35877 dB

S1043:c4p
(MB3a SN52)

2.11588 Pa rms 50.27558 uPa rms -91.06134 dB

S1043:c5p
(MB3a SN30)

2.17967 Pa rms 27.59045 uPa rms -96.46911 dB

A second test of the harmonic distortion was performed in which the amplitude of the sinusoid 
was increased to 4 V peak (24 Pa).  This test was run for approximately 3 minutes with a 90% 
confidence interval of 4.69 dB.

Figure 36 Calibrator Harmonic Distortion, 24 Pa

The reference signal appears as a very pure tone with harmonics visible at 2.42 Hz and 4.23 Hz.  
The output of the MB3a sensors has a tone with matching signal amplitudes but with more 
harmonics visible.  The amount of Total Harmonic Distortion (THD) present in each of the 
recorded signals is shown in the table below.

Table 22 Calibrator Harmonic Distortion, 24 Pa
Waveform Peak RMS Secondary RMS THD
S1036:c5p 
(reference)

16.23009 Pa rms 74.49199 uPa rms -106.75797 dB

S1043:c4p
(MB3a SN52)

16.96583 Pa rms 1.1268 mPa rms -82.16396 dB

S1043:c5p
(MB3a SN30)

17.44389 Pa rms 0.47311 mPa rms -91.17929 dB

3.12Calibrator 2-Tone
Test description:  The purpose of the 2-Tone test is to verify the linearity of the sensor.  A 
Quanterra ultra-low-distortion oscillator is used to generate a signal containing two tones.  The 
first tone is a large amplitude (2 V), low frequency (0.01 Hz) sinusoid.  The second tone is a 
smaller amplitude (0.5 V), higher frequency (1.23 Hz) sinusoid.  This signal was fed into both of 
the MB3’s calibrator inputs and simultaneously recorded on a second Smart24 testbed digitizer 
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as a reference.  The MB3a sensors were enclosed within the 330 L isolation chamber with their 
inlets open to help isolate them from ambient pressure signals.  

A sequence of 10 time windows for sine fits, each capturing 5 cycles of the 1.23 Hz tone, were 
then assigned across a half period of the low frequency sinusoid, as shown in the figure below.

Figure 37 Calibrator 2-Tone Time Series

With the MB3a’s calibrator sensitivity of 6 Pa/V, the low and high frequency amplitudes should 
resulted in observed pressures of +/- 12 Pa and +/- 3 Pa, respectively.  However, at low 
frequency tone of 0.01 Hz the MB3a response is down 3 dB, which would result in an expected 
output of +/- 8.5 Pa.  This peak value is consistent with time series plot above.

There is an observable phase delay in the low frequency sinusoid between the signal being fed 
into the MB3a calibrator inputs and the output of the MB3a’s.  This delay is expected since the 
response model for the MB3a at 0.01 Hz has an approximate 45 degree phase correction.  The 
output time series have not been corrected for their respective instrument response models.

The time series were then filtered using a highpass Butterworth filter with a cutoff frequency of 
50 mHz.  This filter will serve to remove the low frequency signal from the time series.  
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Figure 38 2-Tone Filtered Time Series
 
The pressure measurement for each of the tones was observed on the recording of the signal 
being inputted into the MB3a calibrator.  The MB3a calibrator sensitivity of 6 Pa/V provided by 
CEA was used to convert the calibrator input voltage into a presumed reference pressure.  The 
reference pressure measurement was then compared to the peak voltages observed on each of the 
sensors under test to compute that sensor’s sensitivity in Volts/Pascal.  

The linearity of the MB3a’s may be determined by examining the estimated sensitivity for 
variations.  If the MB3a is perfectly linear across the amplitude range of the input tone, then 
there should be no variation, to within measurement error, of the sensitivities.

Table 23 Calibrator 2-Tone Sensitivities
1 2 3 4 5 6 7 8 9 10

S1043:c4p
(MB3a SN 52)

20.86528 
mV/Pa

20.8573 
mV/Pa

20.86031 
mV/Pa

20.86565 
mV/Pa

20.86646 
mV/Pa

20.85958 
mV/Pa

20.86304 
mV/Pa

20.86735 
mV/Pa

20.8634 
mV/Pa

20.86286 
mV/Pa

S1043:c5p
(MB3a SN 30)

21.49136 
mV/Pa

21.48462 
mV/Pa

21.49048 
mV/Pa

21.4968 
mV/Pa

21.49213 
mV/Pa

21.49094 
mV/Pa

21.49033 
mV/Pa

21.49455 
mV/Pa

21.49187 
mV/Pa

21.49327 
mV/Pa
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Figure 39 Calibrator 2-Tone Sensitivity 
MB3a SN52

Figure 40 Calibrator 2-Tone Sensitivity 
MB3a SN30

 
MB3a SN52 was observed to have a mean sensitivity across the 2-Tone test of 20.8631 mV/Pa 
with a variation of +/- 0.0058 mV/Pa.

MB3a SN30 was observed to have a mean sensitivity across the 2-Tone test of 21.4916 mV/Pa 
with a variation of +/- 0.0070 mV/Pa.

The observed variation sensitivity in both sensors was less than 0.05%, which is below our 
measurement error.  Therefore, using the calibrator, the two MB3a’s appear to be linear across a 
+/- 12 Pa range of amplitudes.

3.13Seismic Sensitivity
Test description:  The purpose of the seismic sensitivity test is to evaluate and determine the 
infrasound sensors sensitivity to ground motion.  The sensors were isolated by placing them 
inside the 330L chamber with their inlets open. Isolating the sensors from the ambient pressure 
will serve to minimize signals that may mask the outputs due to ground motion.  A GS13 short-
period seismometer was co-located with the infrasound sensors just outside of the isolation 
chamber to provide a reference.

A vehicle was then driven around the FACT site bunker for approximately 5 minutes to generate 
the desired ground motion.  The time series and power spectra of the MB2000, MB2005, and 
two MB3a sensors are shown below.
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Figure 41 Pressure Time Series Due to Ground Motion

Figure 42 Pressure Power Spectra Due to Ground Motion
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We see that the ground motion from the vehicle is clearly visible in the time series.  In the power 
spectra, the ground motion is visible on the MB3a sensors at frequencies above 4 Hz when it 
becomes greater in magnitude than the observed background.  The ground motion is not visible 
on the MB2000 or MB2005 until above 7 Hz due to their higher levels of self-noise than the 
MB3a.

The seismic sensitivity of the MB3a infrasound sensors is expected to be flat to acceleration.  In 
order to evaluate their sensitivity, contrived seismic responses were created for each of the 
infrasound sensors.  The data from the reference GS13 and the infrasound sensors were corrected 
for their respective instrument response models, scaling the records to acceleration (m/s2) and 
correcting for amplitude and phase.

The coherence was computed using the technique described by Holcomb (1989) under the 
lumped noise model assumption, assigning incoherent noise to the infrasound sensors. The 
spectra (power spectral density estimates or PSDs) were computed using block-by-block DC 
removal, Hann windowing, 2048 FFT length and 5/8 window overlap. With the amount of data 
processed this provided a 90% confidence interval of 1.87 dB. 

The sensitivities of the infrasound sensor seismic response models were then adjusted to 
minimize the relative magnitude between the data from the GS13 Seismometer and the 
infrasound sensors at 10 Hz.  The resulting coherence and relative magnitude plots are shown 
below.

Figure 43 Ground Motion Coherence
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Figure 44 Ground Motion Magnitude Relative to the GS13 Seismometer

The identified seismic sensitivity values for the MB2000, MB2005, and MB3a are shown in the table 
below:

Seismic Sensitivity at 10 Hz
MB2000 SN1380 4.2 V/m/s2  
MB2005 SN7009 4.2 V/m/s2  
MB3a SN52 and SN30 0.6 V/m/s2

Figure 45  Infrasound Sensor Seismic Sensitivity

The MB3a specifications state that the seismic sensitivity is less than 30 Pa/m/s2.  Using the 
MB3a’s nominal sensitivity of 20 mV/Pa, the seismic sensitivity specification is equivalent to 
0.6 V/m/s2, which is what we observed.

Note that the MB2000 and MB2005 that SNL uses as reference were specially ordered to have 
an electronic gain that results in a sensitivity of 100 mV/Pa rather than the standard 20 mV/Pa.  
So, to compare the seismic sensitivities of their transducers, it is necessary to divide the MB2000 
and MB2005 seismic sensitivities in the table above by a factor of 5.  That would make the 4.2 
V/m/s2 equivalent to 0.84 V/m/s2.

So, the MB3a seismic sensitivity was measured to be 0.6 V/m/s2 compared to the MB2000 and 
MB2005 seismic sensitivity of 0.84 V/m/s2, a reduction of 28.6 % or 2.9 dB.

For comparison, the following plot of power spectra in ground acceleration was made using the 
isolation data (3.2 Isolation Noise) from the GS13 Seismometer and the seismic sensitivity 
responses of the infrasound sensors.
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Figure 46 Ground Motion Power Spectra

This plot of ground motion is illustrative of the levels of ground acceleration needed to be visible 
on the output of the MB3a in a quiet pressure environment.  The power spectra show the ground 
acceleration equivalent of the sensor output during a quiet period using their evaluated seismic 
sensitivities.
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4 EVALUATION SUMMARY

Power:
The observed power consumption of the MB3a SN 30 and SN52 sensors were both approximately 
122 mW at 13.2 V.

Isolation Noise:
The observed self-noise of the MB3a SN 30 and SN52 sensors were 36 dB below the noise level of 
5 mPa/√Hz at 1 Hz, exceeding the IMS requirement of being at least 18 dB below. In addition, 
the MB3a self-noise is entirely below the Bowman LNM.

Dynamic Range:
The observed dynamic range of the MB3a SN30 and SN52 sensors was more than 115 dB across 
the 0.02 – 4 Hz passband. Across the entire 0.01 – 28 Hz pass band of the MB3, the estimated 
dynamic range exceeds 110 dB.

Frequency Amplitude Response Verification:
The observed sensitivity at 1 Hz of the MB3a SN30 and SN52 sensors were 21.20 mV/Pa and 
20.30 mV/Pa, respectively.  This represents a differed from the 20 mV/Pa nominal sensitivity of 
6% (0.51 dB) and 1.5% (0.13 dB), respectively.  The sensitivities were consistent across a range 
of amplitudes, from approximately 0.134 Pa to 4.6 Pa, differing by less than +/- 0.19% (0.016 
dB).  All observed variations in sensitivity across a frequency range of 0.01 to 10 Hz were 
consistent with the MB3a response model provided by CEA.  Across the 0.02 – 4 Hz pass band, 
the observed sensitivities differed from the average by +/- 0.71% (0.061 dB) and +/- 0.89% 
(0.077 dB), respectively.

Frequency Amplitude Phase Verification:
Broadband measurements of a white noise source indicate that both the MB3a SN30 and SN52 
sensors have a response that is flat across 0.02 – 4 Hz to within 0.25 dB in magnitude and 0.6 
degrees in phase.  The SN30 sensor has a magnitude response that is approximately 0.4 dB 
greater than SN52 across a 0.01 – 10 Hz pass band.

Dynamic Noise:
The observed self-noises of the MB3a SN30 and SN52 sensors, while measuring amplitudes as 
much as 70 dB above its noise model, were consistent with its noise model.  

Harmonic Distortion:
The piston-phone harmonic distortion test identifies that the two MB3a SN30 and SN52 sensors 
have a linearity that is better than the -44 dB linearity of the piston-phone used in our test bed.

2-Tone:
The piston-phone 2-Tone test identifies that the two MB3a SN30 and SN52 sensors have a 
variation in sensitivity across amplitude which is less than 0.1 %, which is below measurement 
error, across a +/- 3 Pa range of amplitudes.

Calibrator Frequency Amplitude Response Verification:
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The observed sensitivity using the calibrator at 1 Hz of the MB3a SN30 and SN52 sensors were 
21.49 mV/Pa and 20.87 mV/Pa, respectively.  This represents a difference from the 20 mV/Pa 
nominal sensitivity of 7.45% (0.62 dB) and 4.35% (0.37 dB), respectively.  The sensitivities 
were consistent across a range of amplitudes, from approximately 1.5 Pa to 9 Pa, differing by 
less than +/- 0.29% (0.025 dB).  All observed variations in sensitivity across frequency range of 
0.01 to 10 Hz were consistent with the MB3a response model provided by CEA.  Across the 0.02 
– 4 Hz pass band, the observed sensitivities differed from the average by +/- 0.57% (0.049 dB) 
and +/- 1.21% (0.104 dB), respectively.

Calibrator Frequency Amplitude Phase Verification:
Broadband measurements of white noise into the calibrator indicate that both the MB3a SN30 
and SN52 sensors have a response that is flat across 0.02 – 4 Hz to within 0.45 dB in magnitude 
and 1 degree in phase.  The SN30 sensor has a magnitude response at 1 Hz that is approximately 
0.24 dB greater than SN52.

Calibrator Harmonic Distortion:
Using ultra low distortion sinusoids into the calibrator, the two MB3a SN30 and SN52 sensors 
have a linearity that is in the range of -82 to -96.5 dB.

Calibrator 2-Tone:
The calibrator 2-Tone test identifies that the two MB3a SN30 and SN52 sensors have a variation 
in sensitivity across amplitude which is less than 0.05 %, which is below measurement error, 
across a +/- 12 Pa range of amplitudes.

Seismic Sensitivity:
The MB3a SN30 and SN52 sensors have a measured sensitivity to ground motion of 0.6 V/m/s2.  
This is consistent with the MB3a specification of 30 Pa/m/s2 with a pressure sensitivity of 20 
mV/Pa.  The MB3a seismic sensitivity is observed to be 28.6 % (2.9 dB) lower than the MB2000 
and MB2005 reference sensors.
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APPENDIX A:  RESPONSES

MB2000 Response
The MB2000 response used has the standard poles and zeros provided by CEA.  The sensitivity 
of 0.1 V/Pa was validated by comparison of the MB2000 SN 1380 to the MB2005 SN 7009.

Figure 47 MB2000 Response
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MB2005 Response
The MB2005 response used has the standard poles and zeros provided by CEA.  The sensitivity 
was determined by evaluating the MB2005 SN 7009 in the Los Alamos National Laboratory 
traceable calibration chamber.

Figure 48 MB2005 Response
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MB3a Response
The MB3a response was provided to SNL by CEA with the sensitivity, poles, and zeros below.

Figure 49 MB3a Response
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